Distributionally Robust Losses for Latent Covariate Mixtures
نویسندگان
چکیده
Reliable Machine Learning via Structured Distributionally Robust Optimization Data sets used to train machine learning (ML) models often suffer from sampling biases and underrepresent marginalized groups. Standard are trained optimize average performance perform poorly on tail subpopulations. In “Distributionally Losses for Latent Covariate Mixtures,” John Duchi, Tatsunori Hashimoto, Hongseok Namkoong formulate a DRO approach training ML uniformly well over They design worst case optimization procedure structured distribution shifts salient in predictive applications: (a subset of) covariates. The authors propose convex that controls subpopulation provide finite-sample (nonparametric) convergence guarantees. Empirically, they demonstrate their lexical similarity, wine quality, recidivism prediction tasks observe significantly improved across unseen
منابع مشابه
Robust Covariate Shift Prediction with General Losses and Feature Views
Covariate shift relaxes the widely-employed independent and identically distributed (IID) assumption by allowing different training and testing input distributions. Unfortunately, common methods for addressing covariate shift by trying to remove the bias between training and testing distributions using importance weighting often provide poor performance guarantees in theory and unreliable predi...
متن کاملDistributionally Robust Stochastic Programming
Abstract. In this paper we study distributionally robust stochastic programming in a setting 7 where there is a specified reference probability measure and the uncertainty set of probability mea8 sures consists of measures in some sense close to the reference measure. We discuss law invariance of 9 the associated worst case functional and consider two basic constructions of such uncertainty set...
متن کاملDistributionally Robust Logistic Regression
This paper proposes a distributionally robust approach to logistic regression. We use the Wasserstein distance to construct a ball in the space of probability distributions centered at the uniform distribution on the training samples. If the radius of this ball is chosen judiciously, we can guarantee that it contains the unknown datagenerating distribution with high confidence. We then formulat...
متن کاملDistributionally Robust Submodular Maximization
Submodular functions have applications throughout machine learning, but in many settings, we do not have direct access to the underlying function f . We focus on stochastic functions that are given as an expectation of functions over a distribution P . In practice, we often have only a limited set of samples fi from P . The standard approach indirectly optimizes f by maximizing the sum of fi. H...
متن کاملDistributionally Robust Convex Optimization
Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research
سال: 2022
ISSN: ['1526-5463', '0030-364X']
DOI: https://doi.org/10.1287/opre.2022.2363